Проß^ńната Ikavoтоínons Пepıopıбиúv: aтí in Фuaıkń otous AגyopiӨpous

$\Delta \eta \mu \eta ์ \tau \rho \eta s$ A $\chi \lambda$ เó $\pi \tau \alpha \varsigma$

University of California
Santa Cruz

The Setting: Random CSPs

Variables

- n variables with small, discrete domains
- m conflicting constraints
- Random bipartite graph:
- Sparse graph, i.e. $m=O(n)$

Random Graph k-coloring

- Each vertex is a variable with domain $\{1,2, \ldots, k\}$
- Each edge is a "not-equal" constraint on two variables
- $G(n, m)$ random graph: the two variables are chosen randomly

Vertices

- Random r-regular: each variable is chosen r times

Random k-SAT

- Take n Boolean variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Among all $2^{k}\binom{n}{k}$ possible k -clauses select m uniformly and independently. Typically $m=r n$.
- Example $(k=3)$:
$\left(\bar{x}_{12} \vee x_{5} \vee \bar{x}_{9}\right) \wedge\left(x_{34} \vee \bar{x}_{21} \vee x_{5}\right) \wedge \cdots \cdots \wedge\left(x_{21} \vee x_{9} \vee \bar{x}_{13}\right)$

Random k-SAT

- Variables are binary.
- Every constraint (k-clause) binds k variables.
- Forbids exactly one of the 2^{k} possible joint values.
- Random k-SAT = each clause picks k random literals.

Clause nodes

Two Values

Theorem. For every $d>0$, w.h.p. the chromatic number of $G(n, p=d / n)$
is either k or $k+1$
where k is the smallest integer s.t. $d<2 k \log k$.
[A., Naor '04]

Examples

- If $d=7$, w.h.p. the chromatic number is 4 or 5 .
- If $d=10^{60}$, w.h.p. the chromatic number is

3771455490672260758090142394938336005516126417647650681575 or

3771455490672260758090142394938336005516126417647650681576

A simple k-coloring algorithm

- Repeat
-Pick a random uncolored vertex
-Assign it the lowest allowed number (color)

Works when $d \leq k \log k$
[Bollobás, Thomasson 84]
[McDiarmid 84]

- There are no k-colorings for $d \geq 2 k \log k$

The satisfiability threshold conjecture

Conjecture:for every $k \geq 3$, there is r_{k} such that
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\mathcal{F}_{k}(n, r n)\right.$ is satisfiable $]= \begin{cases}1 & \text { if } r=r_{k}-\epsilon \\ 0 & \text { if } r=r_{k}+\epsilon\end{cases}$

Since the 80 s: for every $k \geq 3$,

$$
c \frac{2^{k}}{k}<r_{k}<2^{k} \ln 2
$$

[Chvátal \& Reed 92]
[Frieze \& Suen 96]

Easy Upper Bound

The probability there is a satisfying assignments is at most:

$$
\begin{aligned}
2^{n}\left(1-\frac{1}{2^{k}}\right)^{m} & =\left[2\left(1-\frac{1}{2^{k}}\right)^{r}\right]^{n} \\
& \rightarrow 0 \quad \text { for } r \geq 2^{k} \ln 2
\end{aligned}
$$

Lower Bound

Repeat:

- Pick a random variable and set it randomly
- Satisfy 1-clauses if they exist (repeatedly)
- Fail if any 0 -clause occurs
- Finds a satisfying truth assignment w.h.p. for all

$$
r<\frac{2^{k}}{k} \quad \text { [Chao \& Franco '86] }
$$

Bounds for the k-SAT threshold

For all $k \geq 3$:

$$
2^{k} \ln 2-k<r_{k}<2^{k} \ln 2
$$

k	3	4	5	7	10	20	21
Upper bound	4.51	10.23	21.33	87.88	708.94	726,817	$1,453,635$
Lower bound	3.52	7.91	18.79	84.82	704.94	726,809	$1,453,626$
Best algorithm	3.52	5.54	9.63	33.23	172.65	95,263	181,453

Bicoloring 5-uniform hypergraphs

5-uniform hypergraphs

5-uniform hypergraphs

Natural question

Are there efficient algorithms that work closer
to each problem's threshold?

Our Best Algorithms are Naive

- Repeat
- Pick a random uncolored vertex
- Assign it the lowest available color
- Repeat
- Pick a random variable and set it randomly
- Satisfy 1-clauses if they exist (repeatedly)

In a parallel universe

Marc Mézard
Giorgio Parisi
Riccardo Zecchina

Statistical Physics

Sampling satisfying assignments

(thought experiment)

- Approximate the fraction p_{i} of satisfying truth assignments in which variable x_{i} takes value 1.
- Set x_{i} to 1 with probability p_{i} and simplify.

Sampling satisfying assignments

(thought experiment)

- Approximate the fraction p_{i} of satisfying truth assignments in which variable x_{i} takes value 1.
- Set x_{i} to 1 with probability p_{i} and simplify.

Locally:

Sampling satisfying assignments

(thought experiment)

- Approximate the fraction p_{i} of satisfying truth assignments in which variable x_{i} takes value 1.
- Set x_{i} to 1 with probability p_{i} and simplify.

Locally:

Given boundary Λ : compute p_{Λ}

$$
p_{i}=\sum_{\Lambda} p_{\Lambda} \times \operatorname{Ext}(\Lambda)
$$

Hope

- The variables in the boundary of the tree are "far apart in the graph" (if we remove the tree).
- Therefore, they should be uncorrelated; in which case "we can compute".

> e.g., LDPC codes

Hope

- The variables in the boundary of the tree are "far apart in the graph" (if we remove the tree).
- Therefore, they should be uncorrelated; in which case "we can compute".

> But if clustering exists...

- The marginals are NOT uncorrelated.
- Clusters with many frozen variables induce "long-range" correlations.

Rigorizing the 1-RSB picture

We prove that at $t_{k} \sim \frac{2^{k}}{k} \log k$

- Exponentially many clusters appear
- They are far apart from one another
- They have small diameter
- Many variables are frozen in each

Rigorizing the 1-RSB picture

We prove that at $t_{k} \sim \frac{2^{k}}{k} \log k$

- Exponentially many clusters appear
- They are far apart from one another
- They have small diameter
- Many variables are frozen in each

Contrast: set of solutions is "convex" up to

$$
\sim \frac{2^{k}}{k}
$$

Definitions

For any formula F :
-Let $\mathcal{S}(F)$ be the set of satisfying assignments of F.
-Let C_{1}, C_{2}, \ldots be the connected components (clusters) of $S(F)$. (Adjacent $=$ Hamming distance 1)
-Let the label of C be its projection $\ell(C) \in\{0,1, *\}^{n}$.
-If $\ell_{i}(C) \in\{0,1\}$ we say that x_{i} is frozen in C.
Two quick observations:

- Labels are "lossless" for cubes.
- The label of C can be "all-stars" already with $|C|=n$.

A majority of frozen variables

Theorem. For every $k \geq 9$ and

$$
r>c_{k}=\frac{4}{5} 2^{k} \ln 2(1+o(1))
$$

w.h.p. in every cluster the majority of variables are frozen.

Nearly everything freezes

Theorem. For every $\epsilon>0$ and all $k \geq k_{0}(\epsilon)$, there exists $c_{k}^{\epsilon}<r_{k}$, such that w.h.p. in every cluster at least $(1-\epsilon) \cdot n$ variables are frozen.

Nearly everything freezes

Theorem. For every $\epsilon>0$ and all $k \geq k_{0}(\epsilon)$, there exists $c_{k}^{\epsilon}<r_{k}$, such that w.h.p. in every cluster at least $(1-\epsilon) \cdot n$ variables are frozen.

As k grows,

$$
\frac{c_{k}^{\epsilon}}{2^{k} \ln 2} \rightarrow \frac{1}{1+\epsilon(1-\epsilon)}
$$

Coarsening

Definition. A variable x_{i} is free in $x \in\{0,1, *\}^{n}$ if in every clause containing x_{i}, \bar{x}_{i} there is some other satisfied literal or $*$.

Coarsening

Definition. A variable x_{i} is free in $x \in\{0,1, *\}^{n}$ if in every clause containing x_{i}, \bar{x}_{i} there is some other satisfied literal or $*$.

Repeat until fixed point: set all free variables to * .

Coarsening

Definition. A variable x_{i} is free in $x \in\{0,1, *\}^{n}$ if in every clause containing x_{i}, \bar{x}_{i} there is some other satisfied literal or $*$.

Repeat until fixed point: set all free variables to * .

1. All σ in C have the same fixed point, called cover(C).
2. label $(C) \preceq \operatorname{cover}(C)$ deterministically.

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{\sigma} \operatorname{Pr}[\sigma \text { is coreless } \mid \sigma \text { is satisfying }] \times \operatorname{Pr}[\sigma \text { is satisfying }] \\
& =2^{n} \cdot\left(1-\frac{1}{2^{k}}\right)^{r n} \cdot \operatorname{Pr}[0 \text { is coreless } \mid \mathbf{0} \text { is satisfying }]
\end{aligned}
$$

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{\sigma} \operatorname{Pr}[\sigma \text { is coreless } \mid \sigma \text { is satisfying }] \times \operatorname{Pr}[\sigma \text { is satisfying }] \\
& =2^{n} \cdot\left(1-\frac{1}{2^{k}}\right)^{r n} \cdot \operatorname{Pr}[\mathbf{0} \text { is coreless } \mid \mathbf{0} \text { is satisfying }]
\end{aligned}
$$

- Conditioning on "0 is satisfying" is easy
- Relevant clauses = uniquely-satisfied clauses
- Similar to hypergraph core computation

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{\sigma} \operatorname{Pr}[\sigma \text { is coreless } \mid \sigma \text { is satisfying }] \times \operatorname{Pr}[\sigma \text { is satisfying }] \\
& =2^{n} \cdot\left(1-\frac{1}{2^{k}}\right)^{r n} \cdot \operatorname{Pr}[\mathbf{0} \text { is coreless } \mid \mathbf{0} \text { is satisfying }] \\
& <\left[2 \cdot\left(1-\frac{1}{2^{k}}\right)^{r} \cdot e^{-f(r)}\right]^{n}
\end{aligned}
$$

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{\sigma} \operatorname{Pr}[\sigma \text { is coreless } \mid \sigma \text { is satisfying }] \times \operatorname{Pr}[\sigma \text { is satisfying }] \\
& =2^{n} \cdot\left(1-\frac{1}{2^{k}}\right)^{r n} \cdot \operatorname{Pr}[\mathbf{0} \text { is coreless } \mid \mathbf{0} \text { is satisfying }] \\
& <\left[2 \cdot\left(1-\frac{1}{2^{k}}\right)^{r} \cdot e^{-f(r)}\right]^{n}
\end{aligned}
$$

$\operatorname{Pr}[\mathbf{0}$ is coreless $\mid \mathbf{0}$ is satisfying $]= \begin{cases}1-o(1) & \text { if } r<t_{k} \\ o(1) & \text { if } r>t_{k}\end{cases}$

Proof

- Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{\sigma} \operatorname{Pr}[\sigma \text { is coreless } \mid \sigma \text { is satisfying }] \times \operatorname{Pr}[\sigma \text { is satisfying }] \\
& =2^{n} \cdot\left(1-\frac{1}{2^{k}}\right)^{r n} \cdot \operatorname{Pr}[\mathbf{0} \text { is coreless } \mid \mathbf{0} \text { is satisfying }] \\
& <\left[2 \cdot\left(1-\frac{1}{2^{k}}\right)^{r} \cdot e^{-f(r)}\right]^{n}
\end{aligned}
$$

$$
t_{k} \sim \frac{2^{k}}{k} \log k
$$

Contiguity of Planted \& Random

We will create two formulas with n variables and $m=r n$ clauses, where $r<2^{k} \ln 2-k$:

Contiguity of Planted \& Random

We will create two formulas with n variables and $m=r n$ clauses, where $\mathrm{r}<2^{\mathrm{k}} \ln 2-\mathrm{k}$:

- F is generated by selecting the m clauses at random, among all possible clauses.

Contiguity of Planted \& Random

We will create two formulas with n variables and $m=r n$ clauses, where $r<2^{k} \ln 2-k$:

- F is generated by selecting the m clauses at random, among all possible clauses.
- G is generated by:
- Selecting a random T in $\{0,1\}^{n}$.
- Selecting m clauses compatible with t at random.

Contiguity of Planted \& Random

We will create two formulas with n variables and $m=r n$ clauses, where $r<2^{k} \ln 2-k$:

- F is generated by selecting the m clauses at random, among all possible clauses.
- G is generated by:
- Selecting a random t in $\{0,1\}^{n}$.
- Selecting m clauses compatible with t at random.

Let σ be a random satisfying assignment of F (if one exists). The pairs (σ, F) and (T, G) are statistically indistinguishable.

Summary

- Much before disappearing solutions form clusters:
- Relatively small
- Far apart
- Exponentially many
- "Error-correcting-code with fuzz"

Summary

- Much before disappearing solutions form clusters:
- Relatively small
- Far apart
- Exponentially many
- "Error-correcting-code with fuzz"
- Frozen variables -> long range correlations \rightarrow cause naive local algorithms to fail.

Summary

- Much before disappearing solutions form clusters:
- Relatively small
- Far apart
- Exponentially many
- "Error-correcting-code with fuzz"
- Frozen variables -> long range correlations -> cause naive local algorithms to fail.

Influence propagation without gadgets.

