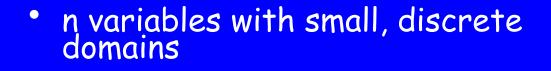
Προβλήματα Ικανοποίησης Περιορισμών: από τη Φυσική στους Αλγορίθμους

Δημήτρης Αχλιόπτας

University of California Santa Cruz

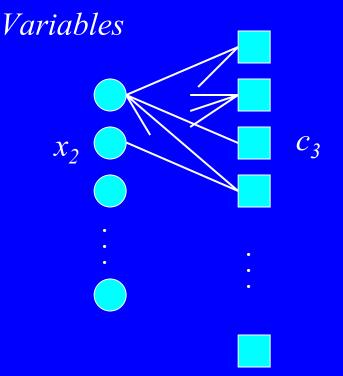
The Setting: Random CSPs



m conflicting constraints

• Random bipartite graph:

• Sparse graph, i.e. $m=\Theta(n)$

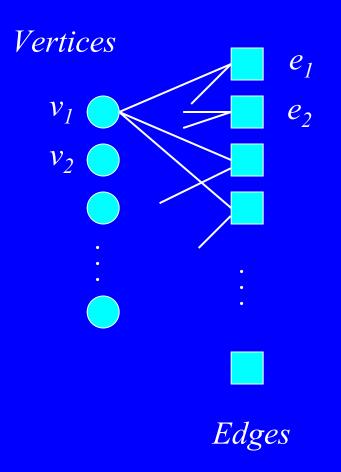


Constraints

Random Graph k-coloring

- Each vertex is a variable with domain {1,2,...,k}
- Each edge is a "not-equal" constraint on two variables

- G(n,m) random graph: the two variables are chosen randomly
- Random r-regular: each variable is chosen r times



Random k-SAT

• Take n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$

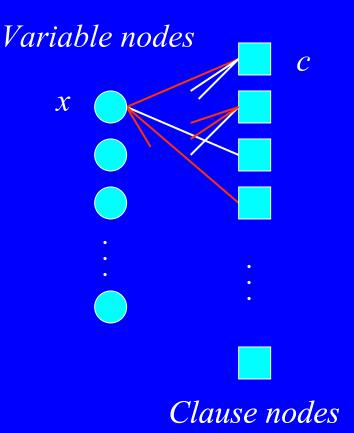
• Among all $2^k \binom{n}{k}$ possible k-clauses select m

uniformly and independently. Typically m=rn .

• Example (k = 3): ($\overline{x}_{12} \lor x_5 \lor \overline{x}_9$) $\land (x_{34} \lor \overline{x}_{21} \lor x_5) \land \cdots \land (x_{21} \lor x_9 \lor \overline{x}_{13})$

Random k-SAT

- Variables are binary.
- Every constraint (k-clause) binds k variables.
- Forbids exactly one of the 2^k possible joint values.
- Random k-SAT = each clause picks k random literals.



Two Values

Theorem. For every d > 0, w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

where k is the smallest integer s.t. $d < 2k \log k$.

[A., Naor '04]

• If d=7, w.h.p. the chromatic number is 4 or 5 .

• If $d = 10^{60}$, w.h.p. the chromatic number is

377145549067226075809014239493833600551612641764765068157 **5 or**

3771455490672260758090142394938336005516126417647650681576

A simple k-coloring algorithm

Repeat

Pick a random uncolored vertex

Assign it the lowest allowed number (color)

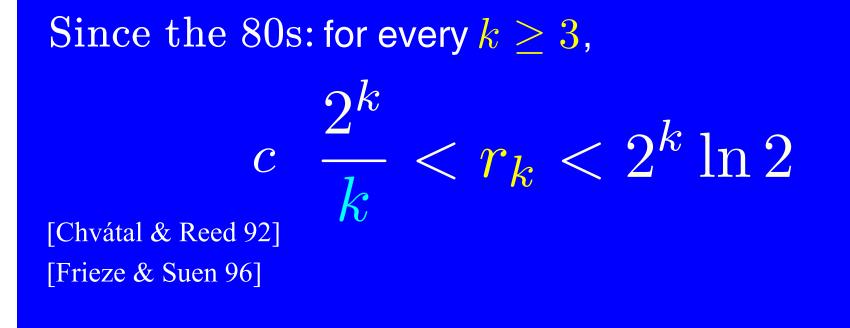
Works when $d \le k \log k$

[Bollobás, Thomasson 84] [McDiarmid 84]

• There are no k-colorings for $d \geq 2k \log k$

The satisfiability threshold conjecture Conjecture: for every $k \geq 3$, there is r_k such that

 $\lim_{n \to \infty} \Pr[\mathcal{F}_k(n, rn) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } r = r_k - \epsilon \\ 0 & \text{if } r = r_k + \epsilon \end{cases}$



Easy Upper Bound

The probability there is a satisfying assignments is at most:

$$2^{n}\left(1-\frac{1}{2^{k}}\right)^{m} = \left[2\left(1-\frac{1}{2^{k}}\right)^{r}\right]^{n}$$

 $\rightarrow 0 \quad \text{for } r \ge 2^k \ln 2$

Lower Bound

Repeat:

- Pick a random variable and set it randomly
- Satisfy 1-clauses if they exist (repeatedly)
- Fail if any O-clause occurs

• Finds a satisfying truth assignment w.h.p. for all

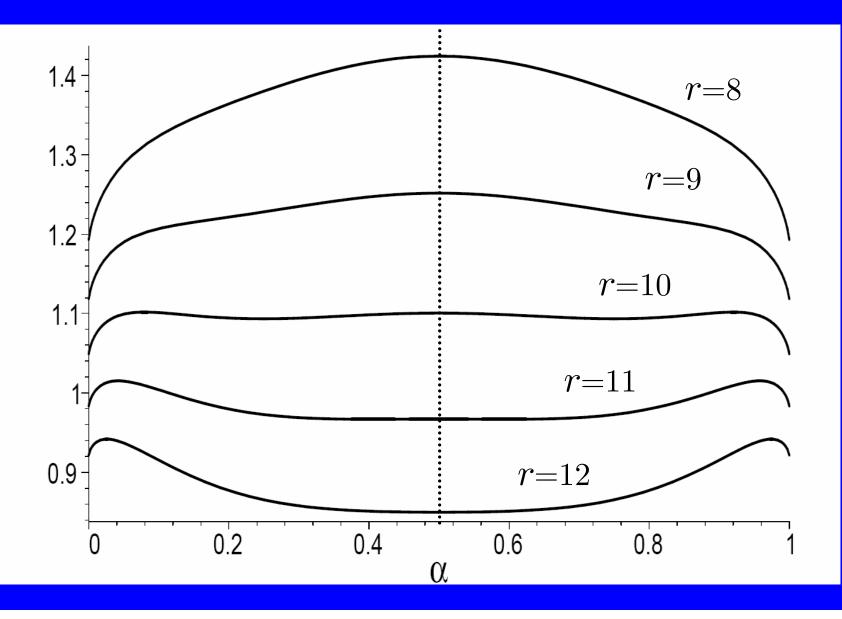
 $\frac{2^k}{k}$

[Chao & Franco '86]

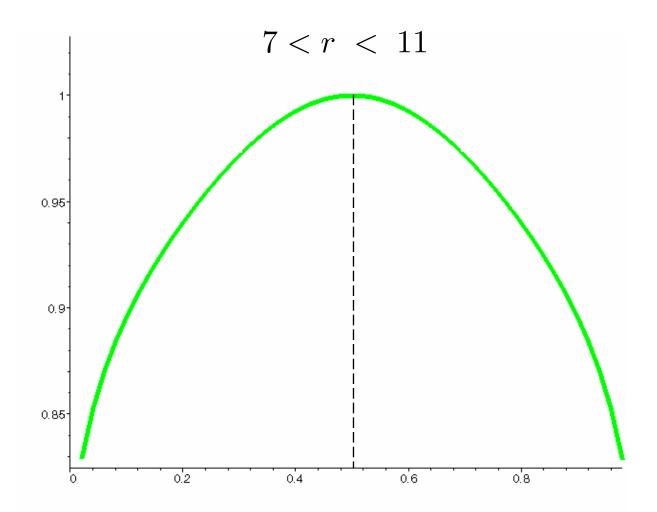
Bounds for the k-SAT threshold [A., Peres '04] For all $k \ge 3$: $2^k \ln 2 - k < r_k < 2^k \ln 2$

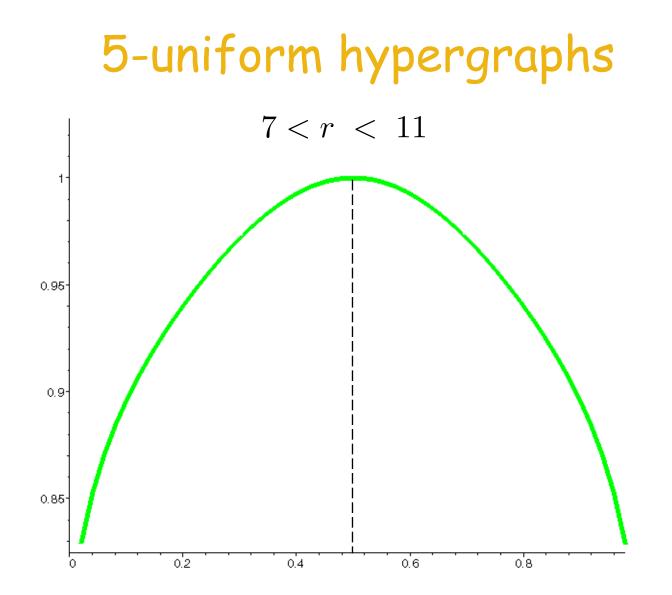
k	3	4	5	7	10	20	21
Upper bound	4.51	10.23	21.33	87.88	708.94	726,817	1,453,635
Lower bound	3.52	7.91	18.79	84.82	704.94	726,809	1,453,626
Best algorithm	3.52	5.54	9.63	33.23	172.65	95,263	181, 453

Bicoloring 5-uniform hypergraphs



5-uniform hypergraphs





Natural question

Are there efficient algorithms that work closer to each problem's threshold?

Our Best Algorithms are Naive

Repeat

Pick a random uncolored vertex

Assign it the lowest available color

Repeat

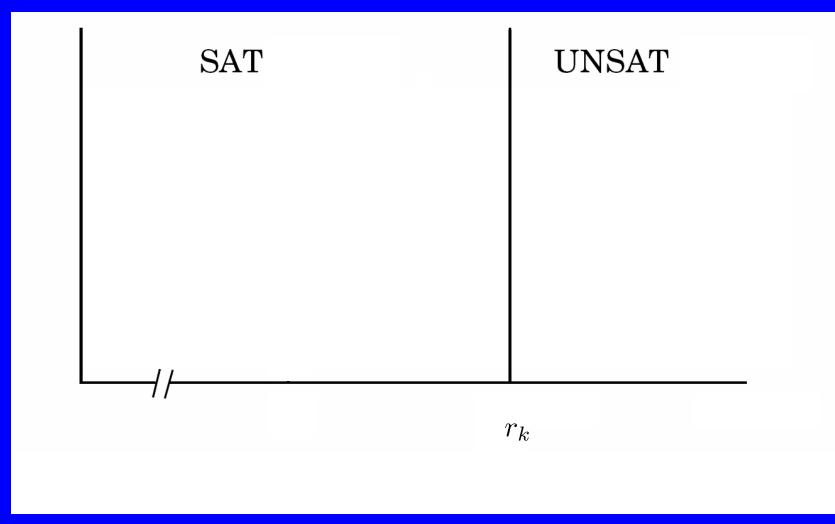
Pick a random variable and set it randomly

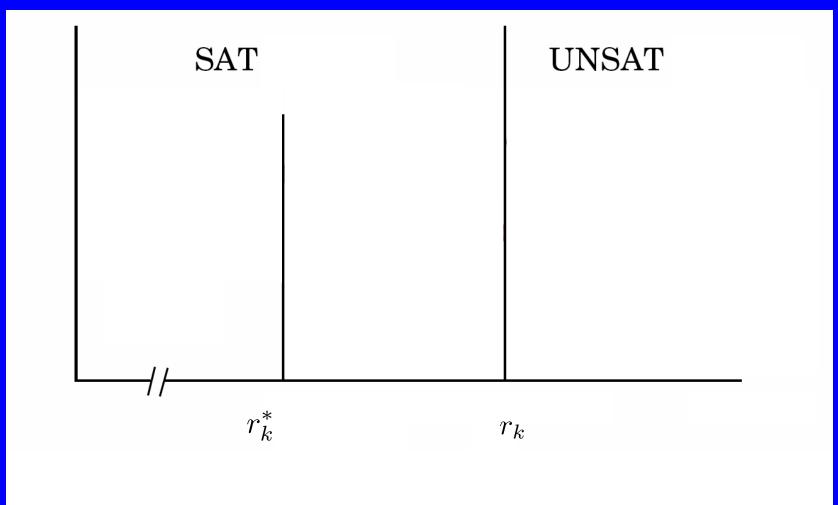
Satisfy 1-clauses if they exist (repeatedly)

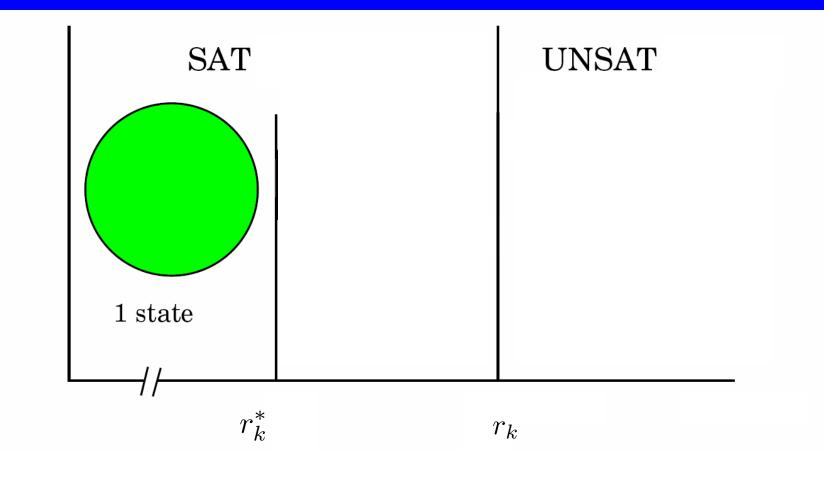
In a parallel universe

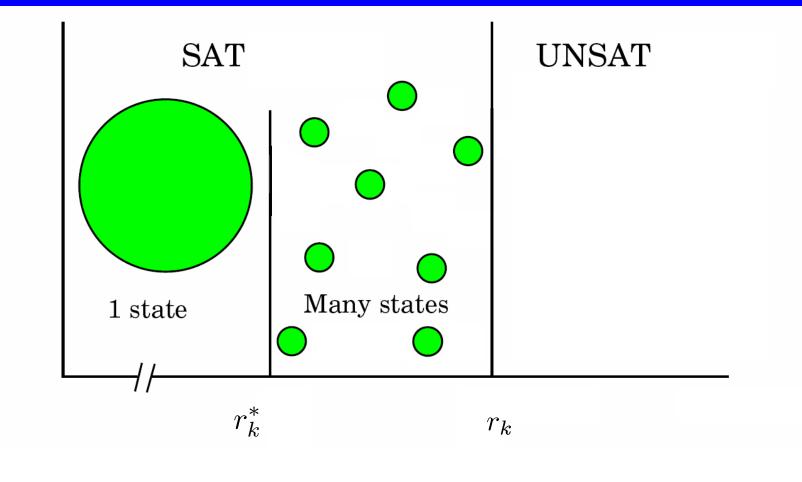
Marc Mézard

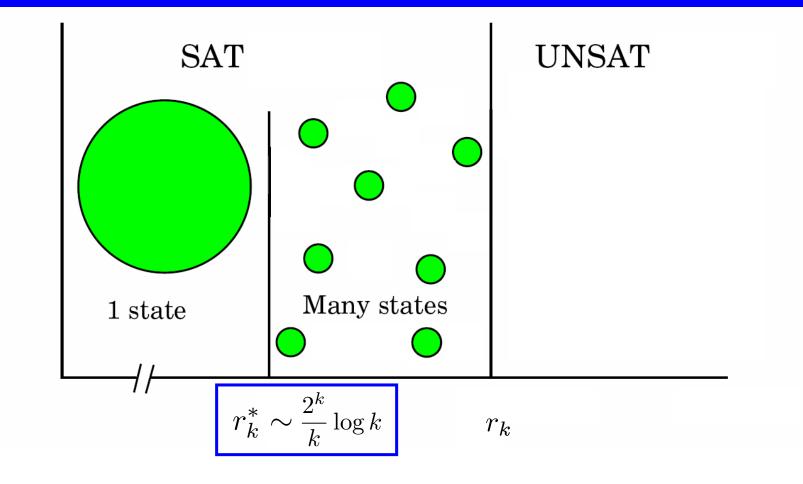
Giorgio Parisi Riccardo Zecchina











Sampling satisfying assignments

(thought experiment)

- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p_i and simplify.

Sampling satisfying assignments

(thought experiment)

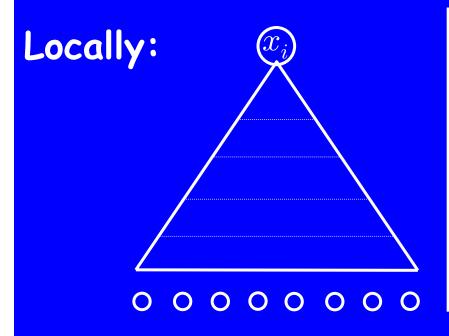
- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p_i and simplify.



Sampling satisfying assignments

(thought experiment)

- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p_i and simplify.



Given boundary Λ : compute p_{Λ}

$$p_i = \sum_{\Lambda} p_{\Lambda} \times \operatorname{Ext}(\Lambda)$$

Hope

- The variables in the boundary of the tree are "far apart in the graph" (if we remove the tree).
- Therefore, they should be uncorrelated; in which case "we can compute".

e.g., LDPC codes

Hope

- The variables in the boundary of the tree are "far apart in the graph" (if we remove the tree).
- Therefore, they should be uncorrelated; in which case "we can compute".

e.g., LDPC codes

But if clustering exists...

- The marginals are NOT uncorrelated.
- Clusters with many frozen variables induce "long-range" correlations.

Rigorizing the 1-RSB picture We prove that at $t_k \sim \frac{2^k}{k} \log k$

- Exponentially many clusters appear
- They are far apart from one another
- They have small diameter
- Many variables are frozen in each

Rigorizing the 1-RSB picture We prove that at $t_k \sim \frac{2^k}{k} \log k$

- Exponentially many clusters appear
- They are far apart from one another
- They have small diameter
- Many variables are frozen in each

Contrast: set of solutions is "convex" up to $\sim \frac{2^k}{k}$

Definitions

For any formula F:

-Let S(F) be the set of satisfying assignments of F. -Let C_1, C_2, \dots be the connected components (clusters)

of S(F). (Adjacent = Hamming distance 1) -Let the label of C be its projection $\ell(C) \in \{0, 1, *\}^n$. -If $\ell_i(C) \in \{0, 1\}$ we say that x_i is frozen in C.

Two quick observations:

- Labels are "lossless" for cubes.
- The label of C can be "all-stars" already with |C|=n.

A majority of frozen variables

Theorem. For every $k \ge 9$ and $r > c_k = \frac{4}{5} 2^k \ln 2 (1 + o(1)),$ w.h.p. in every cluster the majority of variables are frozen.

Nearly everything freezes

Theorem. For every $\epsilon > 0$ and all $k \ge k_0(\epsilon)$, there exists $c_k^{\epsilon} < r_k$, such that w.h.p. in every cluster at least $(1 - \epsilon) \cdot n$ variables are frozen.

Nearly everything freezes

Theorem. For every $\epsilon > 0$ and all $k \ge k_0(\epsilon)$, there exists $c_k^{\epsilon} < r_k$, such that w.h.p. in every cluster at least $(1 - \epsilon) \cdot n$ variables are frozen.

As k grows,

$$\frac{c_k^{\epsilon}}{2^k \ln 2} \to \frac{1}{1 + \epsilon(1 - \epsilon)}$$

Coarsening

Definition. A variable x_i is free in $x \in \{0, 1, *\}^n$ if in every clause containing x_i, \overline{x}_i there is some other satisfied literal or *.

Coarsening

Definition. A variable x_i is free in $x \in \{0, 1, *\}^n$ if in every clause containing x_i, \overline{x}_i there is some other satisfied literal or *.

Repeat until fixed point: set all free variables to *.

Coarsening

Definition. A variable x_i is free in $x \in \{0, 1, *\}^n$ if in every clause containing x_i, \overline{x}_i there is some other satisfied literal or *.

Repeat until fixed point: set all free variables to *.

1. All σ in C have the same fixed point, called cover(C). 2. label(C) \prec cover(C) deterministically.

Let X be the number of satisfying assignments
whose cover (fixed point) is "all-*". (Call them "coreless".)

• Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$\begin{aligned} \mathbf{E}[X] &= \sum_{\sigma} \Pr[\sigma \text{ is coreless } \mid \sigma \text{ is satisfying}] \times \Pr[\sigma \text{ is satisfying}] \\ &= 2^n \cdot \left(1 - \frac{1}{2^k}\right)^{rn} \cdot \Pr[\mathbf{0} \text{ is coreless } \mid \mathbf{0} \text{ is satisfying}] \end{aligned}$$

• Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$\begin{aligned} \mathbf{E}[X] &= \sum_{\sigma} \Pr[\sigma \text{ is coreless } \mid \sigma \text{ is satisfying}] \times \Pr[\sigma \text{ is satisfying}] \\ &= 2^n \cdot \left(1 - \frac{1}{2^k}\right)^{rn} \cdot \Pr[\mathbf{0} \text{ is coreless } \mid \mathbf{0} \text{ is satisfying}] \end{aligned}$$

Conditioning on "O is satisfying" is easy

- Relevant clauses = uniquely-satisfied clauses
- Similar to hypergraph core computation

Let X be the number of satisfying assignments
whose cover (fixed point) is "all-*". (Call them "coreless".)

$$\begin{split} \mathbf{E}[X] &= \sum_{\sigma} \Pr[\sigma \text{ is coreless } \mid \sigma \text{ is satisfying}] \times \Pr[\sigma \text{ is satisfying}] \\ &= 2^{n} \cdot \left(1 - \frac{1}{2^{k}}\right)^{rn} \cdot \Pr[\mathbf{0} \text{ is coreless } \mid \mathbf{0} \text{ is satisfying}] \\ &< \left[2 \cdot \left(1 - \frac{1}{2^{k}}\right)^{r} \cdot e^{-f(r)}\right]^{n} \end{split}$$

• Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$\begin{split} \mathbf{E}[X] &= \sum_{\sigma} \Pr[\sigma \text{ is coreless } \mid \sigma \text{ is satisfying}] \times \Pr[\sigma \text{ is satisfying}] \\ &= 2^n \cdot \left(1 - \frac{1}{2^k}\right)^{rn} \cdot \Pr[\mathbf{0} \text{ is coreless } \mid \mathbf{0} \text{ is satisfying}] \\ &< \left[2 \cdot \left(1 - \frac{1}{2^k}\right)^r \cdot e^{-f(r)}\right]^n \end{split}$$

 $\Pr[\mathbf{0} \text{ is coreless } | \mathbf{0} \text{ is satisfying}] = \begin{cases} 1 - o(1) & \text{if } r < t_k \\ o(1) & \text{if } r > t_k \end{cases}$

• Let X be the number of satisfying assignments whose cover (fixed point) is "all-*". (Call them "coreless".)

$$\begin{split} \mathbf{E}[X] &= \sum_{\sigma} \Pr[\sigma \text{ is coreless } \mid \sigma \text{ is satisfying}] \times \Pr[\sigma \text{ is satisfying}] \\ &= 2^{n} \cdot \left(1 - \frac{1}{2^{k}}\right)^{rn} \cdot \Pr[\mathbf{0} \text{ is coreless } \mid \mathbf{0} \text{ is satisfying}] \\ &< \left[2 \cdot \left(1 - \frac{1}{2^{k}}\right)^{r} \cdot e^{-f(r)}\right]^{n} \end{split}$$

$$t_k \sim \frac{2^k}{k} \log k$$

We will create two formulas with n variables and m=rn clauses, where r < 2^k ln2 - k:

We will create two formulas with n variables and m=rn clauses, where r < 2^k ln2 - k:

 F is generated by selecting the m clauses at random, among all possible clauses.

We will create two formulas with n variables and m=rn clauses, where r < 2^k ln2 - k:

- F is generated by selecting the m clauses at random, among all possible clauses.
- G is generated by:
 - Selecting a random τ in $\{0,1\}^n$.
 - Selecting m clauses compatible with T at random.

We will create two formulas with n variables and m=rn clauses, where r < 2^k ln2 - k:

- F is generated by selecting the m clauses at random, among all possible clauses.
- G is generated by:
 - Selecting a random τ in $\{0,1\}^n$.
 - Selecting m clauses compatible with T at random.

Let σ be a random satisfying assignment of F (if one exists). The pairs (σ ,F) and (τ ,G) are statistically indistinguishable.

Summary

- Much before disappearing solutions form clusters:
 - Relatively small
 - Far apart
 - Exponentially many
- "Error-correcting-code with fuzz"

Summary

- Much before disappearing solutions form clusters:
 - Relatively small
 - Far apart
 - Exponentially many
- "Error-correcting-code with fuzz"
- Frozen variables -> long range correlations -> cause naive local algorithms to fail.

Summary

- Much before disappearing solutions form clusters:
 - Relatively small
 - Far apart
 - Exponentially many
- "Error-correcting-code with fuzz"
- Frozen variables -> long range correlations -> cause naive local algorithms to fail.

Influence propagation without gadgets.