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The Setting: Random CSPs

Variables

n variables with small, discrete
domains

m conflicting constraints

Random bipartite graph:

Sparse graph, i.e. m=0O(n)

Constraints




Random Graph k-coloring

» Each vertex is a variable with |
domain{1,2,... k} Vertices

* Each edge is a "not-equal”
constraint on two variables

* G(n,m) random graph: the two
variables are chosen randomly

* Random r-reqular: each
variable is chosen r times




Random k-SAT

e Take n Boolean variables X = {x1,xo,...,2,}

n

k

e Among all 2’“(

> possible k-clauses select m

uniformly and independently. Typically m = rn .

e Example (£ =3):
(512 \% Is \/fg) /N\ (3334 V xo1 V 335) /N\ /N\ (2321 \% L9 \% Tlg)




Random k-SAT

Variable nodes

Variables are binary.

i
Every constraint (k-clause) . .\ 7<=
O
O L]

binds k variables.

Forbids exactly one of the 2k
possible joint values.

Random k-SAT = each clause ®
picks k random literals. ||

Clause nodes




Two Values

Theorem. For every d > 0, w.h.p. the chromatic
number of G(n,p =d/n)

1s either k£ or kK + 1

where k is the smallest integer s.t. d < 2k log k.

[A., Naor '04]




Examples

If d = 7, w.h.p. the chromatic numberis 4 or 5.

If d = 10%Y w.h.p. the chromatic number is

377145549067226075809014239493833600551612641764765068157 O
or

377145549067226075809014239493833600551612641764765068157 O




A simple k-coloring algorithm

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

[Bollobas, Thomasson 84]
Works when d S k lOg k [McDiarmid 84]

There are no k-colorings for d > 2klog k




The satisfiability threshold conjecture

Conjecture:for every k > 3, there is T such that

lim Pr|Fg(n,rn) is satisfiable] =

n— oo

0 ifr=ry+e

{1 it r=r, —¢

Since the 80s: for every k > 3,
ok "
C ? g T g 2 1I1 2

[Chvatal & Reed 92]
[Frieze & Suen 96]




Easy Upper Bound

The probability there is a satisfying assignments is

_ N
= 12(1-5

at most:

for r > 28 1n 2




Lower Bound

Repeat:
- Pick a random variable and set it randomly
- Satisfy 1-clauses if they exist (repeatedly)
- Fail if any O-clause occurs

e Finds a satisfying truth assignment w.h.p. for al

2k [Chao & Franco ‘86

T<?




Bounds for the k-SAT threshold

[A., Peres ‘04]

For all £ > 3:
22—k <r,<28In2

k 3 4 5 7 10 20 21
Upper bound | 4.51 10.23 21.33 &87.88 708.94 726,817 1,453,635
Lower bound | 3.52 7.91 18.79 84.82 704.94 726,809 1,453,626

Best algorithm | 3.52 5.54 9.63 33.23 172.65 95,263 181,453




Bicoloring 5-uniform hypergraphs
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Natural question

Are there efficient algorithms
that work closer
to each problem'’s threshold?




Our Best Algorithms are Naive

Repeat
— Pick a random uncolored vertex
— Assign it the lowest available color

Repeat
— Pick a random variable and set it randomly
— Satisfy 1-clauses if they exist (repeatedly)




In a parallel universe

Marc Mézard Giorgio Parisi  Riccardo Zecchina




Statistical Physics
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Statistical Physics

1 state
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Statistical Physics

Many states

O O




Statistical Physics

1 state
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Sampling satisfying assignments
(thought experiment)
e Approximate the fraction p, of satisfying truth
assignments in which variable x, takes value 1.

e Set I, to 1 with probability p, and simplify.
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Sampling satisfying assignments
(thought experiment)
e Approximate the fraction p, of satisfying truth
assignments in which variable x, takes value 1.

e Set I, to 1 with probability p, and simplify.

Locally: Given boundary A:
compute p,

/ \ |
/ \ p=> paXxE
A

[ AN

O O0O0O0O0O0O0OO0O0




Hope

* The variables in the boundary of the tree are
“far apart in the graph” (if we remove the tree).

* Therefore, they should be uncorrelated; in which
case "we can compute”.

e.g., LDPC codes




Hope

* The variables in the boundary of the tree are
“far apart in the graph” (if we remove the tree).

* Therefore, they should be uncorrelated; in which
case "we can compute”.

e.g., LDPC codes

But if clustering exists...

* The marginals are NOT uncorrelated.

» Clusters with many frozen variables induce
“long-range” correlations.




Rigorizing the 1-RSB picture
k
We prove that at ti ~ % log k

- Exponentially many clusters appear
- They are far apart from one another

- They have small diameter
- Many variables are frozen in each




Rigorizing the 1-RSB picture
2k

We prove that at ti ~ " log k

- Exponentially many clusters appear

- They are far apart from one another
- They have small diameter

- Many variables are frozen in each

Contrast: set of solutions is "convex” up to




Definitions

For any formula 7"

-Let S(F) be the set of satisfying assignments of F.
-Let C,,C,,... be the connected components (clusters)

of S(F) (Adjacent = Hamming distance 1)
-Let the label of C be its projection /(C') € {0,1,%}"

-If 1,(C) € {0, 1} we say that x;is frozen in C.

Two quick observations:

e Labels are "lossless” for cubes.

e The label of C can be “all-stars” already with |C'|=n.




A majority of frozen variables

Theorem. Ffor every k> 9 and

4
r>op = 2"In2 (1 + o(1)),

w.h.p. i every cluster the majority of variables
are frozen.




Nearly everything freezes

Theorem. For every e > 0 and all k > kq(e),
there exists ci, < 1k, such that w.h.p. in every
cluster at least (1 — €) - n variables are frozen.




Nearly everything freezes

Theorem. For every e > 0 and all k > kq(e),
there exists ci, < 1k, such that w.h.p. in every
cluster at least (1 — €) - n variables are frozen.

As k grows,

X 1
" 14 €(1 —¢)




Coarsening

Definition. A variable x; is free in x € {0,1,*}" if in every
clause containing x;,x; there is some other satisfied literal or *.
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Coarsening

Definition. A variable x; is free in x € {0,1,*}" if in every
clause containing x;,x; there is some other satisfied literal or *.

Repeat until fixed point: set all free variables to * .

1. All gin C have the same fixed point, called cover(C).
2. label(C) < cover(C) deterministically.




Proof

e Let X be the number of satisfying assignments
whose cover (fixed point) is "all-x". (call them "coreless".)
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Proof

e Let X be the number of satisfying assignments
whose cover (fixed point) is "all-x". (call them "coreless".)

ZPr[a is coreless | o is satisfying] x Pr|o is satisfying]

> - Pr|0 is coreless | O is satisfying|

e Conditioning on "0 /s satisfying" is easy
e Relevant clauses = uniquely-satisfied clauses
e Similar to hypergraph core computation
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Proof

e Let X be the number of satisfying assignments
whose cover (fixed point) is "all-x". (call them "coreless".)

™
) - Pr|0 is coreless | 0 is satisfying|

(1—-0(1) ifr <ty

L o(1) if r > g




Proof

e Let X be the number of satisfying assignments
whose cover (fixed point) is "all-x". (call them "coreless".)

ZPr[a is coreless | o is satisfying] x Pr|o is satisfying]




Contiguity of Planted & Random
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clauses, where r < 2k In2 - k:
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Contiguity of Planted & Random

We will create two formulas with n variables and m=rn
clauses, where r < 2k In2 - k:

e F is generated by selecting the m clauses at random,
among all possible clauses.

e (G is generated by:
- Selecting a random 7 in {0,1}".
- Selecting m clauses compatible with T at random.

Let o be a random satisfying assignment of F (if one exists).
The pairs (0,F) and (7,6) are statistically indistinguishable.




Summary

Much before disappearing solutions form clusters:
* Relatively small

* Far apart

* Exponentially many

» "Error-correcting-code with fuzz"
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Summary

* Much before disappearing solutions form clusters:
* Relatively small
* Far apart
* Exponentially many

» "Error-correcting-code with fuzz"

- Frozen variables -> long range correlations -> cause
naive local algorithms to fail.

Influence propagation without gadgets.




