
Προβλήµατα Ικανοποίησης Περιορισµών:
από τη Φυσική στους Αλγορίθµους

∆ηµήτρης Αχλιόπτας

University of California

Santa Cruz

The Setting: Random CSPs

Variables

Constraints

.

x2 c3

• n variables with small, discrete
domains

• m conflicting constraints

• Random bipartite graph:

• Sparse graph, i.e. m=Θ(n)

Random Graph k-coloring

• Each vertex is a variable with
domain {1,2,…,k}

• Each edge is a “not-equal”
constraint on two variables

• G(n,m) random graph: the two
variables are chosen randomly

• Random r-regular: each
variable is chosen r times

Vertices

Edges

.

v1

e1

e2

v2

Random k-SAT

Take n Boolean variables

Among all possible k-clauses select m

uniformly and independently. Typically .

Example () :
(x12 ∨ x5 ∨ x9) ∧ (x34 ∨ x21 ∨ x5) ∧ · · · · · · ∧ (x21 ∨ x9 ∨ x13)

k = 3

m = rn

2k

(
n

k

)
X = {x1, x2, . . . , xn}

Random k-SAT

Variables are binary.
Every constraint (k-clause)
binds k variables.
Forbids exactly one of the 2k

possible joint values.

Random k-SAT = each clause
picks k random literals.

Clause nodes

Variable nodes

Clause nodes

.

x
c

Theorem. For every d > 0, there exists an integer
k = k(d) such that w.h.p. the chromatic number of
G(n, p = d/n)

Two Values

is either k or k + 1

where k is the smallest integer s.t. d < 2k log k.

[A., Naor ’04]

w.h.p. the chromatic
G(n, p = d/n)number of

Examples

If , w.h.p. the chromatic number is or .

If , w.h.p. the chromatic number is

or

d = 7

d = 1060

377145549067226075809014239493833600551612641764765068157

3771455490672260758090142394938336005516126417647650681576

5

4 5

A simple k-coloring algorithm

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

Works when

There are no k-colorings for

d ≤ k log k

d ≥ 2k log k

[Bollobás, Thomasson 84]
[McDiarmid 84]

The satisfiability threshold conjecture
for every , there is such that

lim
n→∞

Pr[Fk(n, rn) is satisfiable] =
{

1 if r = rk − ε
0 if r = rk + ε

k ≥ 3 rk

for every , k ≥ 3

2k

k
< rk < 2k ln 2

Conjecture:

Since the 80s:

[Chvátal & Reed 92]
[Frieze & Suen 96]

c

The probability there is a satisfying assignments is
at most:

Easy Upper Bound

2n

(
1 − 1

2k

)m

=
[
2
(

1 − 1
2k

)r]n

→ 0 for r ≥ 2k ln2

Lower Bound

Repeat:
– Pick a random variable and set it randomly
– Satisfy 1-clauses if they exist (repeatedly)

– Fail if any 0-clause occurs

Finds a satisfying truth assignment w.h.p. for all

[Chao & Franco ‘86]

r <
2k

k

Bounds for the k-SAT threshold

For all k ≥ 3:

k 3 4 5 7 10 20 21
Upper bound 4.51 10.23 21.33 87.88 708.94 726, 817 1, 453, 635
Lower bound 3.52 7.91 18.79 84.82 704.94 726, 809 1, 453, 626

Best algorithm 3.52 5.54 9.63 33.23 172.65 95, 263 181, 453

[A., Peres ‘04]

2k ln 2 − k < rk < 2k ln 2

Bicoloring 5-uniform hypergraphs

r=8

r=9

r=10

r=11

r=12

5-uniform hypergraphs
7 < r < 11

7 < r < 11

5-uniform hypergraphs

Natural question

Are there efficient algorithms
that work closer

to each problem’s threshold?

Our Best Algorithms are Naive

Repeat
– Pick a random uncolored vertex
– Assign it the lowest available color

Repeat
– Pick a random variable and set it randomly
– Satisfy 1-clauses if they exist (repeatedly)

Riccardo Zecchina

In a parallel universe

Giorgio ParisiMarc Mézard

Statistical Physics

rk

r3rk
rkr∗

k ∼ 2k

k
log k

Statistical Physics

rkr∗
k ∼

Statistical Physics

rk

Statistical Physics

rkr∗
k ∼

rk

Statistical Physics

rkr∗
k ∼ 2k

k
log k

Approximate the fraction pi of satisfying truth

assignments in which variable xi takes value 1.

Set xi to 1 with probability pi and simplify.

Sampling satisfying assignments
(thought experiment)

Approximate the fraction pi of satisfying truth

assignments in which variable xi takes value 1.

Set xi to 1 with probability pi and simplify.

Locally: xi

Sampling satisfying assignments
(thought experiment)

Approximate the fraction pi of satisfying truth

assignments in which variable xi takes value 1.

Set xi to 1 with probability pi and simplify.

Locally: xi Given boundary Λ:
compute pΛ

p =
∑
Λ

pΛ × Ext(Λ)
i

Sampling satisfying assignments
(thought experiment)

Hope

• The variables in the boundary of the tree are
“far apart in the graph” (if we remove the tree).

• Therefore, they should be uncorrelated; in which
case “we can compute”.

e.g., LDPC codes

Hope

But if clustering exists…

• The marginals are NOT uncorrelated.

• Clusters with many frozen variables induce
“long-range” correlations.

e.g., LDPC codes

• The variables in the boundary of the tree are
“far apart in the graph” (if we remove the tree).

• Therefore, they should be uncorrelated; in which
case “we can compute”.

Rigorizing the 1-RSB picture

We prove that at

– Exponentially many clusters appear
– They are far apart from one another
– They have small diameter
– Many variables are frozen in each

tk ∼ 2k

k
log k

Rigorizing the 1-RSB picture

We prove that at

– Exponentially many clusters appear
– They are far apart from one another
– They have small diameter
– Many variables are frozen in each

Contrast: set of solutions is “convex” up to

∼ 2k

k

tk ∼ 2k

k
log k

Definitions
For any formula F:

–Let the label of C be its projection .
–If we say that xi is frozen in C.

–Let S(F) be the set of satisfying assignments of F.
–Let C1,C2,… be the connected components (clusters)

of S(F). (Adjacent = Hamming distance 1)

�(C) ∈ {0, 1, ∗}n

�i(C) ∈ {0, 1}

Labels are “lossless” for cubes.

The label of C can be “all-stars” already with |C|=n.

Two quick observations:

r > ck =
4
5

2k ln 2 (1 + o(1)),

A majority of frozen variables

w.h.p. in every cluster the majority of variables
are frozen.

Theorem. For every k ≥ 9 and

Nearly everything freezes

Theorem. For every ε > 0 and all k ≥ k0(ε),
there exists cε

k < rk, such that w.h.p. in every
cluster at least (1 − ε) · n variables are frozen.

As k grows,

cε
k

2k ln 2
→ 1

1 + ε(1 − ε)

Nearly everything freezes

Theorem. For every ε > 0 and all k ≥ k0(ε),
there exists cε

k < rk, such that w.h.p. in every
cluster at least (1 − ε) · n variables are frozen.

As k grows,

cε
k

2k ln 2
→ 1

1 + ε(1 − ε)

Definition. A variable xi is free in x ∈ {0, 1, ∗}n if in every
clause containing xi, xi there is some other satisfied literal or ∗.

Coarsening

Repeat until fixed point: set all free variables to .*

Definition. A variable xi is free in x ∈ {0, 1, ∗}n if in every
clause containing xi, xi there is some other satisfied literal or ∗.

Coarsening

Coarsening

Repeat until fixed point: set all free variables to .*

Definition. A variable xi is free in x ∈ {0, 1, ∗}n if in every
clause containing xi, xi there is some other satisfied literal or ∗.

1. All σ in C have the same fixed point, called cover(C).
2. label(C) cover(C) deterministically.	

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)*

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)*

E[X] =
∑

σ

Pr[σ is coreless | σ is satisfying] × Pr[σ is satisfying]

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is coreless | 0 is satisfying]

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)

Conditioning on “0 is satisfying” is easy
Relevant clauses = uniquely-satisfied clauses
Similar to hypergraph core computation

*

E[X] =
∑

σ

Pr[σ is coreless | σ is satisfying] × Pr[σ is satisfying]

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is coreless | 0 is satisfying]

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)*

E[X] =
∑

σ

Pr[σ is coreless | σ is satisfying] × Pr[σ is satisfying]

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is coreless | 0 is satisfying]

<

[
2 ·

(
1 − 1

2k

)r

· e−f(r)
]n

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)*

E[X] =
∑

σ

Pr[σ is coreless | σ is satisfying] × Pr[σ is satisfying]

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is coreless | 0 is satisfying]

<

[
2 ·

(
1 − 1

2k

)r

· e−f(r)
]n

Pr[0 is coreless | 0 is satisfying] =

⎧⎨
⎩

1 − o(1) if r < tk

o(1) if r > tk

Proof

Let X be the number of satisfying assignments
whose cover (fixed point) is “all- ”. (Call them “coreless”.)*

E[X] =
∑

σ

Pr[σ is coreless | σ is satisfying] × Pr[σ is satisfying]

= 2n ·
(

1 − 1
2k

)rn

· Pr[0 is coreless | 0 is satisfying]

<

[
2 ·

(
1 − 1

2k

)r

· e−f(r)
]n

tk ∼ 2k

k
log k

Contiguity of Planted & Random
We will create two formulas with n variables and m=rn

clauses, where r < 2k ln2 – k:

Contiguity of Planted & Random
We will create two formulas with n variables and m=rn

clauses, where r < 2k ln2 – k:

F is generated by selecting the m clauses at random,
among all possible clauses.

Contiguity of Planted & Random
We will create two formulas with n variables and m=rn

clauses, where r < 2k ln2 – k:

F is generated by selecting the m clauses at random,
among all possible clauses.
G is generated by:
– Selecting a random τ in {0,1}n.
– Selecting m clauses compatible with τ at random.

Contiguity of Planted & Random
We will create two formulas with n variables and m=rn

clauses, where r < 2k ln2 – k:

F is generated by selecting the m clauses at random,
among all possible clauses.
G is generated by:
– Selecting a random τ in {0,1}n.
– Selecting m clauses compatible with τ at random.

Let σ be a random satisfying assignment of F (if one exists).
The pairs (σ,F) and (τ,G) are statistically indistinguishable.

Summary

• Much before disappearing solutions form clusters:
• Relatively small
• Far apart
• Exponentially many

• “Error-correcting-code with fuzz”

Summary

• Much before disappearing solutions form clusters:
• Relatively small
• Far apart
• Exponentially many

• “Error-correcting-code with fuzz”

• Frozen variables -> long range correlations -> cause
naive local algorithms to fail.

Summary

• Much before disappearing solutions form clusters:
• Relatively small
• Far apart
• Exponentially many

• “Error-correcting-code with fuzz”

• Frozen variables -> long range correlations -> cause
naive local algorithms to fail.

Influence propagation without gadgets.

