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Our Question
Semidefinite programmingis a
numerical method in convex optimization.

SDP is very efficient, both in theory and in practice.

SDP is widely used in engineering and the sciences.

Input: Several symmetricn× n-matrices
Output: One symmetricn× n-matrix

What is the function from the input to the output?
How does the solution depend on the data?

Let’s begin with two slides on context.....
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Linear Programming
is semidefinite programming for diagonal matrices

The optimal solution of

Maximize c · x subject toA · x = b and x ≥ 0

is apiecewise linear functionof c andb.

It is apiecewise rational functionin the entries ofA.

To study the functiondata 7→ solution, one needs
geometric combinatorics, namelymatroidsfor the
dependence onA andsecondary polytopesfor b, c.
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Universality of Nash Equilibria
Consider the following problem ingame theory:

Given payoff matrices, compute the Nash equilibria.

For two players, this is a piecewiselinear problem.

For three and more players, it is non-linear.
Datta’s Universality Theorem (2003):
Every real algebraic variety is isomorphic to the
set of Nash equilibria of some three-person game.

Corollary: The coordinates of the Nash equilibria can
be arbitraryalgebraic functionsof the payoff matrices.
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Semidefinite Programming
Given: A matrixC and anm-dimensional affine
subspaceU of real symmetricn× n-matrices

SDPProblem:
Maximize trace(C ·X)

subject toX ∈ U and X � 0.

HereX � 0 means thatX is positive semidefinite.

The problem is feasible if and only if the subspaceU
intersects thecone of positive semidefinite matrices.

The optimal solutionX̂ is a (piecewise) algebraic
function of the matrixC and of the subspaceU .
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An Elliptic Curve
Letm = 2 andn = 3. ThenX � 0 defines
a semialgebraic convex region inU ≃ R

2.
It is bounded by thecubic curve{det(X) = 0}.
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Duality of Plane Curves
The dual to the cubic curve is a curve of degreesix:

What does the number6 mean for our SDP problem?
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The Rank Inequalities

We always assume that the dataC andU are generic.

Theorem 1. (Alizadeh–Haeberly–Overton 1997;
Pataki 2000)The rankr of thesolutionX̂ to the
SDP problem satisfies the two inequalities

(

r + 1

2

)

≤
(

n+ 1

2

)

−m

(

n− r + 1

2

)

≤ m.

For fixedm andn, all ranksr in the specified range
are attained for an open set of instances(U , C).
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Distribution of the optimal rank
n 3 4 5 6

m rank percent rank percent rank percent rank percent

3 2 24.00% 3 35.34% 4 79.18% 5 82.78%

1 76.00% 2 64.66% 3 20.82% 4 17.22%

4 3 23.22% 4 16.96% 5 37.42%

1 100 % 2 76.78% 3 83.04% 4 62.58%

5 4 5.90% 5 38.42%

1 100 % 2 100 % 3 94.10% 4 61.58%

6 5 1.32%

2 67.24% 3 93.50% 4 93.36%

1 32.76% 2 6.50% 3 5.32%

7 2 52.94% 3 82.64% 4 78.82%

1 47.06% 2 17.36% 3 21.18%

8 3 34.64% 4 45.62%

1 100 % 2 65.36% 3 54.38%

9 3 7.60% 4 23.50%

1 100 % 2 92.40% 3 76.50%
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Algebraic Degree of SDP
Suppose thatm, n andr satisfy the rank inequalities.

The degreeδ(m,n, r) of the algebraic function
(C,U) 7→ X̂ is thealgebraic degree of SDP.

Plane Curves: δ(2, n, n−1) = n(n− 1)

Bigger Example: δ(105, 20, 10) =

167223927145503062075691969268936976274880

Duality: δ(m,n, r) = δ(
(

n+1

2

)

−m, n , n− r).

Cayley-Steiner: δ(3, 3, 1) = δ(3, 3, 2) = 4
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m r degree r degree r degree r degree r degree

1 1 2 2 3 3 4 4 5 5 6

2 1 2 2 6 3 12 4 20 5 30

3 2 4 3 16 4 40 5 80

1 4 2 10 3 20 4 35

4 3 8 4 40 5 120

1 6 2 30 3 90 4 210

5 4 16 5 96

1 3 2 42 3 207 4 672

6 5 32

2 30 3 290 4 1400

1 8 2 35 3 112

7 2 10 3 260 4 2040

1 16 2 140 3 672

8 3 140 4 2100

1 12 2 260 3 1992

9 3 35 4 1470

1 4 2 290 3 3812
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Cayley’s Cubic Surface

Letm = n = 3. The cubic surfacedet(X) = 0
is aCayley cubic, with four singular points...
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Analytic Solution

Letm = n = 3. The cubic surfacedet(X) = 0 is
aCayley cubic. Its dual is a quarticSteiner surface.

SDP: Maximize a linear function over the convex
region X � 0 bounded by the Cayley cubic.

We can express the optimal solution̂X in terms
of radicals

√
usingCardano’s formula:

EitherX̂ has rank oneand is one of the four singular
points of the Cayley cubic, or̂X has rank twoand is
found by intersecting the Steiner surface with a line.
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Determinantal Varieties

Consider thecomplex projective spacePU ≃ P
m.

LetDr
U denote the variety of all matrices of rank≤ r.

Theorem 2. The codimension ofDr
U is

(

n−r+1

2

)

.

If m >
(

n−r+1

2

)

thenDr
U is irreducible.

The singular locus ofDr
U equalsDr−1

U , and

degree(Dr
U) =

n−r−1
∏

j=0

(

n+j

n−r−j

)

(

2j+1

j

)
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Projective Duality
Let PU∗ denote thedual projective spaceto PU .
The points inPU∗ correspond to hyperplanes inPU .

Any variety V ⊂ PU has adual varietyV∗ ⊂ PU∗.
V∗ is the Zariski closure of the set of all hyperplanes
in PU that are tangent toV at a smooth point.
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The Dual Hypersurface
Lemma 3. If m =

(

n+1

2

)

then the projective dual of
Dr

U equals the complementary determinantal variety:

(Dr
U)∗ = Dn−r

U∗

Theorem 4. The varietyDr
U is non-degenerate if

and only if therank inequalitieshold. thealgebraic
degree of SDPis the degree of the dual hypersurface:

δ(m,n, r) = degree (Dr
U)∗
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Two Matrices with Product Zero
Theorem 5. LetQ{r} be the variety of pairs(X,Y )
of symmetricn×n-matrices withX · Y = 0,
rank(X) = r and rank(Y ) = n− r.
Thebidegreeof Q{r} equals the generating function
for the algebraic degree of semidefinite programming:

C(Q{r}; s, t) =

(n+1

2 )
∑

m=0

δ(m,n, r) · s(n+1

2 )−m · tm.

Settings = t = 1 we get the scalar degree ofQ{r}:

C(Q{3}; 1, 1) = 4 + 12 + 16 + 8 = 40

C(Q{2}; 1, 1) = 10 + 30 + 42 + 30 + 10 = 122
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Check with Macaulay 2
R = QQ[x11,x12,x13,x14,x22,x23,x24,x33,x34,x44,

y11,y12,y13,y14,y22,y23,y24,y33,y34,y44];

X = matrix {{x11, x12, x13, x14},

{x12, x22, x23, x24},

{x13, x23, x33, x34},

{x14, x24, x34, x44}};

Y = matrix {{y11, y12, y13, y14},

{y12, y22, y23, y24},

{y13, y23, y33, y34},

{y14, y24, y34, y44}};

Q3 = minors(1,X*Y) + minors(4,X) + minors(2,Y);

codim Q3, degree Q3

(10, 40)
Q2 = minors(1,X*Y) + minors(3,X) + minors(3,Y);

codim Q2, degree Q2

(10, 122)
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Bothmer-Ranestad Formula
Define a skew-symmetric matrix(ψij)0≤i<j≤n by

ψ0j = 2j−1 and ψij =

j−1
∑

k=i

(

i+ j − 2

k

)

For any subsetI = {i1, . . . , ir} of {1, . . . , n}
let ψI denote thesub-Pfaffianof (ψij) indexed
by I if |I| is even and byI ∪ {0} if |I| is odd.

Theorem 7. δ(m,n, r) =
∑

I

ψI ·ψIc

whereI = {i1, . . . , ir} runs over allr-subsets of
{1, 2, . . . , n} with i1 + · · · + ir =

(

n+1

2

)

−m.
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Reminder on Genericity
In this talk the subspaceU was alwaysgeneric.
For special instances, the algebraic degree is smaller.
Example:The3-ellipseis a Helton-Vinnikov octic

What’s the degree of its dual?Hint: <δ(2, 8, 7)=56.
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Conclusion

Conclusion for Applied Mathematicians:

Algebraic Geometry might be useful.

Conclusion for Pure Mathematicians:

Optimization might be interesting.
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