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Our Question

Semidefinite programminig a
numerical method in convex optimization.

SDP is very efficient, both in theory and in practice
SDP is widely used in engineering and the science

Input: Several symmetria x n-matrices
Output: One symmetria: x n-matrix

What is the function from the input to the output?
How does the solution depend on the data?
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Linear Programming

Is semidefinite programming for diagonal matrices

The optimal solution of
Maximize c - x subjecttoA-x =b and = > 0
IS apiecewise linear functioof ¢ andb.

It Is apiecewise rational functiom the entries ofA.

To study the functiomlatar— solution one needs
;hamely for the

dependence oA and for b, c.
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Universality of Nash Equilibria

Consider the following problem ipame theory:
Given payoff matrices, compute the Nash equilibr
For > this Is a piecewiseé

Forthree and more playerg is non-linear

Datta’s Universality Theorem (2003):

Every real algebraic variety is isomorphic to the
set of Nash equilibria of some three-person game.

Corollary: The coordinates of the Nash equilibria c
be arbitraryalgebraic functionsf the payoff matrices
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Semidefinite Programming

Given: A matrix C' and anm-dimensional affine
subspaceé/ of real symmetria: x n-matrices

SDP Problem:
Maximize trace(C - X)

subjecttoX € U/ and X > 0.
Here X > 0 means thafX Is positive semidefinite

The problem is feasible if and only if the subspéacte
Intersects thecone of positive semidefinite matrices

The optimal solutionX is a (piecewise) algebraic
function of the matrix_' and of the subspace.
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An Elliptic Curve

Letm = 2 andn = 3. ThenX > 0 defines
a semialgebraic convex region it ~ R?.
It is bounded by theubic curve{det(X) = 0}.

<
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Duality of Plane Curves

The dual to the cubic curve is a curve of degsee

-
> Q
~

What does the numbérmean for our SDP problem’
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The Rank Inequalities

We always assume that the dataandi/ are generic.

Theorem 1. (Alizadeh—Haeberly—Overton 1997;

Pataki 2000) The rankr of the solution X to the
SDP problem satisfies the two inequalities

(1)1
() e

For fixedm andn, all ranksr in the specified range
are attained for an open set of instandés C').
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Distribution of the optimal rank

n 3 4 5 6
m | rank  percent| rank  percent| rank percent| rank  percent
3 2 24.00% | 3 35.34% | 4 79.18% | 5 82.78%
1 76.00% | 2 64.66% | 3 20.82% | 4 17.22%
4 3 23.22% | 4 16.96% | 5 37.42%
1 100% | 2 76.78% | 3 83.04% | 4 62.58%
5 4 590% | 5 38.42%
1 100% | 2 100% | 3 94.10% | 4 61.58%
6 5 1.32%
2 67.24% | 3 93.50% | 4 93.36%
1 32.76% | 2 6.50% | 3 5.32%
7 2 52.94% | 3 82.64% | 4 78.82%
1 47.06% | 2 17.36% | 3 21.18%
8 3 34.64% | 4 45.62%
1 100 % 2 65.36% | 3 54.38%
9 3 7.60% | 4 23.50%
1 100 % 2 92.40% | 3 76.50%

The Alaebraic Dearee ofSemidefinite Proarammina




Algebraic Degree of SDP
Suppose that:, n andr satisfy the rank inequalities.

The degree)(m, n,r) of the algebraic function
(C,U) — X isthealgebraic degree of SDP

Plane Curvesé(2,n,n—1) = n(n—1)
Bigger Example §(105,20,10) =
167223927145503062075691969268936976274880

Duality: 6(m,n,r) = 5((”;1)—771,71,71—7“).

Cayley-Steiner §(3,3,1) = 4(3,3,2) = 4
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m degree r degree r degree r degree r degree
1 2 3 4 5
2 2 2 3 12 4 20 ) 30
3 2 3 16 4 40 5 80
1 2 3 4
4 3 8 4 40 5 120
1 6 2 30 3 90 4 210
5 4 16 5 96
1 3 2 42 3 207 4 672
6 5 32
2 30 3 290 4 1400
1 8 2 3
7 2 3 260 4 2040
1 16 2 140 3 672
8 3 140 4 2100
1 12 2 260 3 1992
9 3 4 1470
1 4 2 290 3 3812
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Cayley’s Cubic Surface

Let m = n = 3. The cubic surfacdet(X) = 0
Is aCayley cubig with four singular points...
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Analytic Solution

Letm = n = 3. The cubic surfacdet(X) =0 is
a Cayley cubic Its dual is a quarti&teiner surface

SDP. Maximize a linear function over the convex
region X > 0 bounded by the Cayley cubic.

We can express the optimal solutidhin terms
of radicals usingCardano’s formula

Either X has rank oneand is one of the four singula

points of the Cayley cubic, ok has rank twoand is
found by intersecting the Steiner surface with a line
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Determinantal Varieties
Consider thecomplex projective spacBU ~ P,
Let D;, denote the variety of all matrices of ragkr.

n—’r—|—1)

Theorem 2. The codimension oD, is (",

If m > ("7,"") then Dj, is irreducible.

The singular locus ofD;, equals D;, ', and

degree(D;) = H 2j+1‘
j=0 ( j )
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Projective Duality

Let PU{* denote thedual projective spact PU.
The points INPL(* correspond to hyperplanesiiiy/.

Any variety V C PU has adual variety V* C PU*.
V* Is the Zariski closure of the set of all hyperplane
In PU that are tangent t&/ at a smooth point.

L

> Q
[
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The Dual Hypersurface

Lemma 3. If m = ("}") then the projective dual of

D;, equals the complementary determinantal varie
(D) = D"

Theorem 4. The variety D}, Is non-degenerate if
and only if therank inequalitiesdhold. thealgebraic
degree of SDHs the degree of the dual hypersurfac

o(m,n,r) = degree(D;,)"
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Two Matrices with Product Zero

Theorem 5. Let Q1" be the variety of pair§X,Y")

of symmetrio: xn-matrices withX - Y = 0,

rank(X) =r and rank(Y) =n —r.

Thebidegreeof O!"} equals the generating functior

for the algebraic degree of semidefinite programmi
n+1
("3 N

)
o(m,n,r) - s("2)=m  gm,

C(Q";s,t) =

m

Settings = t = 1 we get the scalar degree 6f"}:

C(OB1,1) = 4+12+16 +8 = 40
C(O?11,1) = 104+30+42+304+10 = 122
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Check with Macaulay 2

R = QJ x11, x12, x13, x14, x22, x23, x24, x33, x34, x44,
yll,y12,y13,y14,y22,y23,y24,y33,y34,y44],;

X =mtrix {{x11, x12, x13, x14},
{x12, x22, x23, x24},
{x13, x23, x33, x34},
{x14, x24, x34, x44}};

Y = matrix {{yll, yl12, y13, yl4},
{yl2, y22, y23, y24},
{y13, y23, y33, y34},
{yl4, y24, y34, y44}};

@B = mnors(l, XxY) + mnors(4,X) + mnors(2,Y);
codi m (B, degree (B

(10, 40)

@ = mnors(1, XxY) + mnors(3,X) + mnors(3,Y);
codim 2, degree Q2

(10, 122)
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Bothmer-Ranestad Formula
Define a skew-symmetric matrix;;)o<i<ij<n Dy

7—1 . :
- 1+ — 2
Yo; = 27 and %Z( k )

k=1

~or any subset = {i1,...,7.} of {1,....n}
et ¢; denote thesub-Pfaffiarof (¢;;) indexed
oy I if |I]iseven and by U {0} if |I]is odd.

Theorem 7. o(m,n,r) = Z@DI-@DIC
I

wherel = {iy,...,.} runs over all-subsets of

{1,2,...,n}with iy + - +i, = ("I1) —m.
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Reminder on Genericity

In this talk the subspac&’ was alwaysjeneric
For special instances, the algebraic degree is sma

Example:The 3-ellipseis a Helton-Vinnikov octic

(D

What's the degree of its dual?nt: <4§(2,8,7)=>56.
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Conclusion

Conclusion for Applied Mathematicians:

Algebraic Geometry might be useful.

Conclusion for Pure Mathematicians:

Optimization might be interesting.
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